The p_{z} orbitals for the lead atoms and one of the e_{1} orbitals of the cyclopentadienyl ring (with the right symmetry) are arranged in such a way as to give a conjugated system. A monomeric molecule participates in the π system with four electrons.
This configuration justifies a planar structure for the polymeric chain.

References

Dave, L. D., Evans, D. F. \& Wilkinson, G. (1959). J. Chem. Soc. 3684.

Fritz, H. P. \& Fischer, E. O. (1961). J. Chem. Soc. 547.
Fischer, E. O. \& Grubert, H. (1956). Z. anorg. Chem. 286, 327.

Vand, V., Eiland, P. F. \& Pepinsky, R. (1957). Acta Cryst. 10, 303.
Forsyth, J. B. \& Wells, M. (1959). Acta Cryst. 12, 412.
Panattoni, C. \& Frasson, E. (1962). Ric. Sci. 32, II-A, 376.
Cruickshank, D. J.W. (1949). Acta Cryst. 12, 412.
Frasson, E., Menegus, F. \& Panattoni, C. (1963). Nature, Lond. 199, 1087.
Bombieri, G. \& Panattoni, C. (1966). Acta Cryst. 20, 595.

Acta Cryst. (1966). 21, 826
Intensity corrections for the Guinier camera. By W.H.Sas and P. M. de Wolff, Laboratorium voor Technische Natuurkunde der Technische Hogeschool, Lorentzweg 1, Delft, The Netherlands
(Received 26 March 1966)

Intensity corrections for the Guinier camera

The integrated intensities as measured on a photometer record of powder diffraction lines on a Guinier film can be written as follows:

$$
\begin{equation*}
I=k p T F^{2} \mathrm{LP} A B S G ; L=1 / \sin ^{2} \theta \cos \theta \tag{1}
\end{equation*}
$$

where $k, p, T, F, \mathrm{~L}$ and P are scale-, multiplicity-, temper-ature-, structure-, Lorentz- and polarization factor respectively. We shall show that the combined effect of the remaining factors A, B, S, G can be approximated by a linear function of $\cos (2 \theta-\psi), \psi$ being the angle between specimen normal and crystal-reflected primary beam; and we present nomograms from which the normalized slope of this function can be found for $\psi=30^{\circ}$.

The factor A accounts for absorption in the specimen (thickness d, linear absorption coefficient μ):

Fig.1. The combined correction factor $N=A B S G$ (circles) as a function of $\cos \chi$ for $\psi=30^{\circ}, \mu_{1} d_{1}=\mu_{2} d_{2}=0 \cdot 35, \mu_{p} d_{p}=0 \cdot 1$ and 8 values of μd. The linear least-squares approximation is shown by the straight lines.

$$
\begin{gather*}
A=-\frac{1}{\mu d} \frac{\cos \psi \cdot \cos \chi}{\cos } \frac{\psi-\cos \chi}{\psi-\exp \{-(\mu d / \cos \psi)\}-\exp } \tag{2}\\
\{-(\mu d / \cos \chi)\}]
\end{gather*}
$$

where $\chi=|2 \theta-\psi|$.
The factor B accounts for absorption in a layer which is often present in front of the film, e.g. wrapping paper or filter (thickness d_{p}, linear absorption coefficient μ_{p}).

$$
\begin{equation*}
B=\exp \left\{-\left(\mu_{p} d_{p} / \cos \chi\right)\right\} \tag{3}
\end{equation*}
$$

S is the oblique incidence factor for integrated intensities:

$$
\begin{gather*}
S=\frac{\left[1-\exp \left\{-\left(\mu_{1} d_{1} / \cos \chi\right)\right\}\right]}{\left[1-\exp \left\{-\mu_{1} d_{1}\right\}\right]} \\
\times \frac{\left[1+\exp \left\{-\left(\mu_{1} d_{1}+\mu_{2} d_{2}\right) / \cos \chi\right\}\right]}{\left[1+\exp \left\{-\left(\mu_{1} d_{1}+\mu_{2} d_{2}\right)\right\}\right]} \tag{4}
\end{gather*}
$$

where d_{1} and d_{2} are the thicknesses of one layer of emulsion and of the base, respectively and μ_{1}, μ_{2} are the corresponding linear absorption coefficients (International Tables for X-ray Crystallography, 1962). G is a geometric factor:

$$
\begin{equation*}
G=1 / \cos \chi \tag{5}
\end{equation*}
$$

(International Tables, 1962), arising from the fact that the θ-dependent factor in (1) is valid for a constant specimenfilm distance, whereas in the Guinier camera that distance varies as $\cos \chi$. Since a photometer measures the energy over a constant height of the diffraction line, the corresponding fraction of the total energy in the Debye-Scherrer cone contains the extra factor $1 / \cos \chi$.*

If we define $N=A B S G$, then N is a function of $\cos \chi$, with parameters $\psi, \mu d, \mu_{1} d_{1}, \mu_{2} d_{2}, \mu_{p} d_{p}$, because A, B, S, G are all functions of $\cos \chi$. For $\mu_{1} d_{1}=\mu_{2} d_{2}$ as well as for $\mu_{2} d_{2}=0$ and a great number of different combinations of

* Hellner (1954) gave an entirely different expression for the geometric factor, which has been cited and tabulated by Sagel (1958). Professor Hellner (private communication) now states that his formula resulted from an erroneous derivation and kindly pointed out to us that the correct expression was given first by Hägg \& Regnström (1944).

Fig.2. Slope n of the linear approximation (normalized so as to yield $N=1$ for $\chi=0^{\circ}$) for $\psi=30^{\circ}$, six values of $\mu_{1} d_{1}$ and three of $\mu_{p} d_{p}$, as a function of μd, with the condition $\mu_{2} d_{2}=$ $\mu_{1} d_{1}$. The size of the circles corresponds to the error of the linear approximation at $\chi=45^{\circ}$, as shown.
$\mu_{1} d_{1}, \mu_{p} d_{p}$ and $\mu d, N$ was calculated by a computer for 10 values of χ between 0 and 60°. The value of $\psi=30^{\circ}$ throughout.

Some of the results are shown in Fig. 1. The computed curves $N=N(\cos \chi)$ are seen to be almost linear in the range $\chi=0-40^{\circ}$, which corresponds to the range $2 \theta=$ $0-70^{\circ}$, covering the greater part - if not all - of useful reflexions. Therefore we approximate them by linear functions

$$
\begin{equation*}
N=N_{0}[1+n(1-\cos \chi)] \tag{6}
\end{equation*}
$$

formulated so as to yield $N=N_{0}$ for $2 \theta=\psi$, whereas N_{0} can be regarded as part of a new scale factor and may be put equal to unity. The quantities N_{0} and n have been calculated in each case by the method of least squares. We used a weighting factor, which was unity for $\chi=0^{\circ}, 30^{\circ}, 40^{\circ}$, 2 for $\chi=10^{\circ}, 20^{\circ}$ (because each of these points corresponds to two values of 2θ), and zero for all other points. The differences between the exact values of N and the function (6) turned out to be less than 1% between $\chi=0^{\circ}$ and 30° (2θ between 0° and 60°). At $\chi=45^{\circ}\left(2 \theta=75^{\circ}\right.$) they rise only rarely up to 5%, while between $\chi=45^{\circ}$ and $\chi=50^{\circ}$ they increase by a factor of about 2 . We have plotted n as a function of μd in Fig. 2 for $\mu_{1} d_{1}=\mu_{2} d_{2}$ and in Fig. 3 for

Fig.3. As Fig.2, the condition now being $\mu_{2} d_{2}=0$.
$\mu_{2} d_{2}=0$, where we have indicated the error of the linear approximation at $\chi=45^{\circ}$. For values of $\mu_{p} d_{p}$ between those chosen for these figures, the value of n can be found by linear interpolation. In intermediate cases ($\mu_{2} d_{2}$ between 0 and $\mu_{1} d_{1}$) we could again interpolate linearly between the values for n obtained from Figs. 2 and 3. Though linear interpolation both with respect to $\mu_{p} d_{p}$ and to $\mu_{2} d_{2}$ is not exactly justified, it has been verified that the accuracy obtained is quite sufficient, the maximum ensuing error in N being less 1%. For single-coated films with absorption coefficient μ and thickness d of the emulsion the curve $\mu_{1} d_{1}=\frac{1}{2} \mu d$ in Fig. 3 should be used, as is easily seen from expression (4).

References

Hägg, G. \& Regnström, G. (1944). Ark. Kemi, Min. Geol. 18A, paper 5.
Hellner, E. (1954). Z. Kristallogr. 106, 125.
International Tables for X-ray Crystallography (1962). Vol. III, p.162. Birmingham: Kynoch Press.
Sagel, K. (1958). Tabellen zur Röntgenstrukturanalyse, p. 78. Göttingen-Heidelberg: Springer-Verlag.

